Space Shuttle Endeavour
atop a 747 Shuttle Carrier
Alrcraft being returned to
Kennedy Space Center
Sfollowing its first flight from
7 to 16 May 1992 and.its
landing at Dryden at the end
of the STS-49 mission.

(NASA Photo EC92 5211-1)

Chapter Five:

Supporting National
Efforts

hile Dryden was pursuing its various “‘exploratory” research projects
over the years, the Center was also providing support for other programs and efforts,
both in aeronautics and in space. Its unusual research aircraft, desert surroundings,
and cadre of flight research specialists gave Dryden unique capabilities for testing
new concepts and vehicles and attacking particular problems that surfaced in opera-
tional air- and spacecraft. Its support for America’s space program has included
efforts such as developing and flying a lunar landing research vehicle, pursuing a
solution to a potentially dangerous pilot-induced oscillation with the Space Shuttle,
and assisting efforts to find a more cost-effective way of putting satellites in space.
Dryden has also provided both government agencies and industry with a wide vari-
ety of aeronautical support—from trouble-shooting problems with new military
aircraft designs, to conducting stall-spin research for both military and general avia-
tion airplanes, to crash-testing a proposed anti-misting fuel additive for the Federal
Aviation Administration.

Many of these support efforts were developed quickly in response to problems
or needs that arose. Dryden’s ability to switch gears and incorporate new or unfore-
seen projects without dropping the other research already in progress was a tribute
to the “technical agility” that was always one of the Center’s greatest strengths. The
people at Dryden did not do the in-depth theoretical research conducted at some of
the other NASA centers. But as flexible, hands-on problem-solvers with actual flight
hardware, they had few equals.
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Supporting the Space Program
Early Efforts

Dryden’s involvement in NASA’s space
program dates back to 1959, when the Center’s
F-104 aircraft were used to test the drogue
parachutes being designed for the Mercury
space capsules. The F-104s performed multiple
drops of the parachutes from above 45,000 feet,
and the flight research uncovered several
critical design flaws that were then able to be
corrected before the system was used on the
actual Mercury spacecraft.

Dryden researchers also provided some
backup support for the military X-20 “Dyna-
Soar” program that was being developed about
that same time. The Dyna-Soar was a delta-
wing vehicle that was to be launched on top of a
booster rocket and then flown back to a hori-
zontal landing. Large rocket booster safety and
performance in those days was uncertain, and
planners wanted to design a workable escape
system for the pilots in the event of a launchpad
booster-rocket explosion. The Dyna-Soar
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design included a small emergency rocket that
could jettison the craft to an altitude of perhaps
6,500 feet, but it was still unclear how a pilot
would land the aircraft safely from that point.
Using a prototype Douglas F5D “Skylancer”
the Center acquired in 1961, Dryden research
pilot Neil Armstrong explored several possible
techniques and developed a procedure that
would have enabled a safe return to landing for
Dyna-Soar pilots. As it turned out, the Dyna-
Soar program was canceled before the craft was
ever built, but the technique developed at
Dryden provided the X-20 project managers
with valuable information they had not been
able to obtain from other sources.!

Dryden’s involvement with NASA’s
space program continued in the early 1960s
with flight research to support the agency’s
“parawing” project. The parawing was an
inflatable, steerable wing/parachute that was
being investigated as a possible alternative to
the simple parachutes used by the Mercury
space capsules. A parawing might enable
follow-on Mercury Mark II capsules (which
became the Gemini spacecraft) to be guided to a
gentle land touchdown instead of the ocean

Flights of Discovery

F-100 and F-100A on
lakebed, showing
modifications to the tail that
solved the aircraft’s deadly
tendency to go out of control
during rolling maneuvers.
The larger tail on aircraft
FW-778 (the F-100A) is
clearly visible as compared
with the unmodified F-100
(FW-773)

(NASA Photo E 1573)




splashdowns simple parachute systems re-
quired. The parawing concept was based on
research by a Langley Research Center engineer
named Francis M. Rogallo, and the soft wing/
parachute was known as a “Rogallo wing.”

In the spring of 1961, NASA’s Space
Task Group initiated research into the applica-
bility of Rogallo’s design to spacecraft. North
American Aviation was awarded a contract to
build and test a prototype Rogallo wing, and
Dryden was asked to support that test program.
Some engineers at Dryden, however, thought
that it would be helpful to try flying a small
paraglider before North American tested its
full-size Rogallo wing. Paul Bikle, the Center’s
director at that point, agreed and approved the
construction and flight of a single-seat
paraglider in December 1961. The result was
the “Paresev 1,” a somewhat unsteady-looking
vehicle that resembled a hang glider attached to
a three-wheeled dune buggy.

The unpowered craft was initially towed
behind a ground vehicle, and the pilot, who sat
out in the open, controlled its movement by
tilting the wing fore, aft, and side to side. The
flying characteristics of the Paresev were less
than ideal, to say the least, and research pilot
Milt Thompson considered it more difficult to
fly than even the early lifting-body aircraft. The
craft’s crude control system led to several tense
moments during the research flights and ulti-
mately caused an accident with the vehicle.
Pilot Bruce Peterson was flying the Paresev I on
a ground tow test when it began an increasingly
severe rocking oscillation and finally nosed
over into the lakebed. Fortunately, Peterson was
not seriously hurt and the vehicle was com-
pletely rebuilt with a better wing and control
system. The Paresev I-A, as the rebuilt vehicle

was named, had better handling characteristics
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and, after initial ground-tow tests, was taken
aloft behind a Stearman biplane and an L.-19
Bird Dog.

Eventually, the vehicle was equipped
with the same kind of inflatable wing North
American was testing and dubbed the Paresev I-
B. In two years, the Paresevs completed 100
ground tows and 60 air tows. But although the
Dryden Paresev finally got to the point where it
had acceptable handling characteristics, the full-
size test vehicle being developed by North
American was not as successful. In 1964, as
costs and time delays increased, NASA dropped
the parawing program and research with the
Paresevs ended.

The value of the Paresev research at
Dryden was that it offered a low-cost way to
investigate some of the flight-control issues and
problems that a parawing concept might entail.
Clearly, there was still a gap between a small
test vehicle and a full-size, space-capable
system. But some of the information was still
useful. And although the inflatable parawing
concept has yet to be applied to a spacecraft, it

may still be used on a future design.?

Lunar Landing Research
Vehicles (LLRYV5s)

One of Dryden’s biggest contributions
to the space program was its work with the
Lunar Landing Research Vehicles (LLRVs)—
tubular craft so bizarre looking that they were
commonly referred to as the “flying bedsteads.”
The LLRVs themselves were the brainchild of
Dryden engineer Hubert “Jake” Drake, but the
research was part of a NASA-wide effort to
develop the experience and techniques neces-
sary for a successful Moon landing.

When President John F. Kennedy issued
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his 1961 challenge to
have an American walk
on the Moon before the
end of the decade,
NASA and industry
researchers went into
high gear. They had
eight short years to
answer all the ques-
tions, develop all the
technology, and over-
come all the obstacles
necessary to achieve
that goal. One of the
questions was how the
astronauts were going
to successfully land and
take off again from the
Moon’s surface. Aero-
dynamic features would
be useless in the
Moon’s airless environment, so the lunar
module would have to be controlled entirely by
propulsion systems.

The Grumman Aircraft Corporation was
given the contract to design and build the actual
lunar module, but NASA managers knew they
would also need to find some way to train the
astronauts to operate the lander in the Moon’s
reduced gravity. NASA planned, of course, to
design a ground simulator for the craft, and the
Langley Research Center was developing a
tethered test machine on a large gantry. But
Drake, a product of Dryden’s hands-on, flight-
oriented atmosphere, believed that the only way
to get complete information on flying the lander
would be to build and operate a free-flying test
vehicle. As luck would have it, Drake was not
alone in his thinking. Several engineers at Bell

Aircraft were also pursuing a design for a free-
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flying lunar lander simulator. In addition to its

history with the X-1 project, Bell was a premier
helicopter manufacturer, a pioneer in vertical
take off and landing (VTOL) aircraft research,
and therefore an obvious partner in the effort.

Dryden and Bell got approval to begin
work on the LLRV in December 1961, and in
February 1963 Bell was awarded a contract to
build two of the vehicles. The vehicles, which
looked something like a cross between a child’s
jungle gym and a science fiction contraption,
were not an entirely new concept. “Flying
bedsteads” had been used to investigate VTOL
aircraft technology as early as 1954. But the
LLRVs had the unique task of investigating the
flight and propulsion controls, pilot displays,
visibility, and flight dynamics of a vehicle
designed to land on the Moon.

Flights of Discovery

Paresev in flight, providing
a low-cost way to test the
Slight-control issues of a
parawing concept for
possible use in returning
spacecraft to Earth

(NASA Photo E 8013)




Gus Grissom (with right
hand on hip) and Milt
Thompson next to the
Paresev. In 1962, when this
photo was taken, Milt
checked the Mercury
astronaut out on the vehicle.
(NASA Photo E 8937)

“ Qctober 30, 1964. The

Because the Moon’s gravity is only one-
sixth as strong as the Earth’s, the LLRVs had a
central, gimballed jet engine that would support
five-sixths of the vehicle’s weight. The gimbal
mechanism made sure that the engine remained
perpendicular to the ground, regardless of the
attitude of the vehicle: In addition, the LLRV
was equipped with two lift rockets to manage
its climb and descent, and 16 smaller reaction
control rocket engines that the pilot used to
control pitch, yaw, and roll. The vehicle also
had six backup rockets
that could be deployed
if the main jet engine
malfunctioned, and it
was equipped with a
zero-zero ejection
seat3 for the pilot.#

LLRYV #1 made
its first flight on

steam and noise
generated by the
controlling reaction
rockets made the
aircraft sound like “a
marshaling yard full of
steam locomotives,” |
according to one
Dryden research pilot,
but the awkward-
looking contraption
performed as prom-
ised. Over the next two
years, NASA pilots
made 198 flights in the
vehicle, incorporating
several modifications
along the way to make
the LLRV more like
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the actual Lunar Module (LM). In early 1967
both LLRVs were shipped to Houston, where
NASA began using them as training vehicles
for the Apollo astronauts. Redesignated the
Lunar Landing Training Vehicles (LLTVs), the
two from Dryden were soon joined by three
more LLTVs that NASA ordered from Bell.
All the Moon mission commanders and
back-up pilots flew the LLTVs before their
flights and considered their experiences with

them extremely valuable. In fact, when Apollo
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F-100 protruding through
the hangar wall following
Scott Crossfield’s emergency
landing in which he skillfully
executed a dead-stick
landing in the less than
docile aircraft, then decided
to glide off the lakebed and
coast to a stop in front of the
NACA hangar. Not realizing
that he had used up the
braking power, Crossfield
went partly through the
hangar wall without doing
extensive damage to the
aircraft, which flew again.
(NASA Photo E 1366)

One of the earliest production aircraft
Dryden assisted was the Northrop F-89. The F-
89 was a high priority air defense program, and
the Air Force had placed an order for more than
1,000 of the jet aircraft. But in early 1952, six
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of the new F-89s lost their wings in flight. The
accidents pointed to a serious flaw in the
aircraft’s design and put the whole program in
jeopardy. The Air Force and Northrop began an
intense effort to determine the cause of the
accidents and asked for Dryden’s help. Dryden
engineers put strain gauges on an F-89 and
conducted a series of research flights to evalu-
ate the in-flight loads on various components,
especially the wings. The flights uncovered a
serious weakness in an area of the wing’s
structure, which Northrop then redesigned.
After the modification, the F-89 went on to a
long and useful service life in the Air Force.
The next trouble-shooting effort with a
military aircraft came with the North American
F-100A—the first of the Century Series fighters
and the first fighter designed to go supersonic in
level flight. The F-100A had barely entered
service in 1954 before a series of accidents and
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in-flight structural failures of the aircraft led the
Air Force to ground the airplane. Dryden was
already experiencing a phenomenon known as
“inertial coupling” with the X-3 research
plane,!5 and researchers suspected that the F-
100A’s problems stemmed from the same
cause. North American, in fact, had the same
thought and was considering a larger tail design
as a possible fix. The Air Force and NACA got
North American to reduce production time on
its new tail design from 90 to a mere 9 days,
and Dryden began an intensive flight research
program defining the F-100A’s roll coupling
problem and evaluating the impact of various
modifications, including the larger tail. The
program was considered such a high priority
that it even eclipsed the X-plane research
Dryden was conducting at the time.

The F-100A was not a docile aircraft,
and on the very first research flight at Dryden,
pilot Scott Crossfield was faced with an emer-
gency landing after an engine-fire warning.
North American’s pilots considered an
unpowered, or “‘deadstick,” landing in the
fighter extremely risky because of its high
landing speed and poor glide performance.
Nevertheless, Crossfield elected to try to land
the airplane and executed an almost flawless
approach and landing on the Rogers lakebed—a
tribute to his excellent pilot skills. That might
have been the end of it, but, his confidence
buoyed by the landing, Crossfield decided to try
to top it by gliding off the lakebed and coasting
to a precision stop in front of the NACA hangar
on the ramp. Unfortunately for Crossfield, he
didn’t realize that he had already used up the
aircraft’s emergency braking power. He coasted
off the lakebed, up the ramp and then, unable to
stop, continued right through the open doors of
the NACA hangar. He managed to miss the X-
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In the early 1980s, Dryden’s assistance
was sought again after the Navy lost several
Grumman F-14 “Tomcat” fighters in spin
incidents. The aircraft was having engine
difficulties at high angles of attack, and if one
engine stalled or flamed out, the asymmetric
thrust from the remaining engine had a ten-
dency to send the plane into a spin. The Tomcat
had a flat spin mode that was proving very
difficult to recover from and had resulted in the
loss of several aircraft and crews. The Navy
asked Grumman to look into the problem, and
Grumman enlisted NASA’s help in developing
a solution. Working with Grumman, engineers
at Dryden and Langley came up with a new
control law that they thought might help the F-
14’s spin response. The new control law was
then tested extensively in simulators before it
was gingerly explored in flight with an F-14
loaned to Dryden for the research.

The flight research showed that the new
control law did, in fact, make a significant
improvement in the controllability of the F-14
in spins. Yet by the time the research was
completed, Navy priorities had apparently
changed and the control law was not imple-
mented in fleet F-14s. The F-14 spin research
program illustrated why technology transfer can
be such a complex and sometimes difficult
process, even if the technology itself is valid.
Nevertheless, the concept had been proven. And
although the control law was not incorporated
into fleet aircraft at the time, it may be retrofit-
ted into F-14D model fighters.17

Over the years, Dryden was also in-
volved in several research efforts with produc-
tion aircraft that did not stem from any particu-
lar problems, but served instead to provide
additional information on a specific aircraft or

type of design. In the early 1950s, for example,
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Dryden obtained a B-47 bomber and used it to
gather useful information on the dynamics and
characteristics of a large, flexible swept-wing
aircraft. That data, in turn, helped engineers
design future swept-wing aircraft, including the
Boeing KC-135 and B-707 transport and every
other swept-wing Boeing aircraft that followed.

Then in 1973, Dryden began flight
testing three remotely piloted 3/8 scale models
of the F-15 “Eagle” fighter that was being
developed by McDonnell Douglas and the Air
Force. Program managers wanted to test the
spin characteristics of the design on a scale
model before committing to a piloted test
program, and Dryden had both experience in
remotely piloted vehicles (RPVs) and a B-52
aircraft capable of launching such a model. The
F-15 RPV flights were successful, and the
results gave McDonnell Douglas and the Air
Force the confidence they needed to go ahead
with a spin test program on a full-scale, piloted
F-15.18

Dryden’s work with production aircraft
programs has never been the primary focus of
its research. But the Center was well suited for
this kind of support work. For one thing, the
daily requirements of keeping research aircraft
flying meant that Dryden’s staff was already
very experienced in trouble-shooting aircraft
and coming up with practical test methods and
solutions. But these efforts also benefited
greatly from the “technical agility” of Dryden’s
staff. Support projects tended to materialize
suddenly when an aircraft program ran into
trouble, requiring quick action and quick an-
swers. Dryden was able to support these vari-
ous efforts, on short time frames, because its
management and staff were accustomed to
juggling different programs and switching gears

and priorities quickly.
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Aviation Safety

In addition to supporting various mili-
tary aircraft design programs, Dryden also
provided support to national civil aviation
efforts, especially in the area of safety. The
Center’s focus on high-speed flight meant that it
was less involved in civil aviation research than
other NASA centers, since civil aircraft tended
to have lower performance than military de-
signs. But in 1957-1958, Dryden was asked to
conduct a series of research flights for what was
then the Civil Aeronautics Administration
(absorbed into the Federal Aviation Administra-
tion during 1958). Boeing was getting ready to
introduce its first jet airliner, the B-707, and the
CAA needed to establish new approach proce-
dure guidelines on cloud-ceiling and visibility
minimums for the new generation of jet trans-
ports. Using the military KC-135 variant of the
707, Dryden pilots conducted a series of flights
that gave the CAA the data it needed to develop
safe instrument guidelines and approach proce-
dures.19

In the 1960s, the aviation community
became concerned about an increasing number
of accidents among general aviation (GA)
aircraft. In an effort to see whether there were
any common design weaknesses or problems in
GA airplanes, Dryden was asked to investigate
the handling characteristics of several different
designs throughout their flight envelopes. In the
end, Dryden pilots surveyed a total of seven
different GA aircraft in order to include a cross-
section of aircraft types in the study. The results
showed that there was no single weakness or
design problem and the designs were generally
adequate, although the criteria for handling
qualities in small aircraft had not kept pace with
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advances in aircraft technology. The point of
the research was not to point out design flaws in
particular models, but the research did produce
the side-benefit of uncovering several problems
with individual aircraft designs. One aircraft,
for example, developed a serious flutter in its
horizontal stabilizer while still within its normal
operating limitations. And the poor stall-spin
performance of another twin-engine model led
its manufacturer to modify the design with
contra-rotating propellers.20

The introduction of jumbo jets in the
late 1960s and early 1970s led to a new area of
concern in aviation safety—wake vortices.
Wingtip, or wake, vortices are very powerful
tornado-like disturbances in the air coming off
the wingtips of an airplane that trail behind the
aircraft. The bigger and heavier the airplane, the
more powerful these disturbances are, and a
small plane trailing too closely behind a larger
one can easily be flipped upside down by these
powerful vortices at the edges of the larger
aircraft’s wake. Wingtip vortices are a particu-
larly dangerous hazard during approaches or
departures from airports since trailing aircraft
have little altitude in which to recover. So when
jumbo jets began mixing with smaller aircraft
at airports, the aviation community began
looking for more detailed information on the
behavior and strength of wake disturbances
from large aircraft.

In late 1969, Dryden pilots began
investigating wake vortices by flying an instru-
mented F-104 fighter behind a B-52 bomber
and C-5 transport. The C-5’s vortices were so
strong that on one flight, they caused the F-104
to roll inverted and lose 3,000-4,000 feet of
altitude, even though the fighter was flying 10
miles behind the larger airplane. In 1973,
Dryden expanded its wake vortex research to

Page 149







Boeing 720 Controlled
Impact Demonstration
aircraft flying above

cutters (iron posts) on
lakebed, showing the setting
for the demonstration
portrayed in the photos on
the preceding page

(NASA Photo

EC84 31672-12)

up on the lakebed to ensure that the fuel tanks

would be ripped open upon impact, since that
was the scenario most likely to result in a post-
crash fire. The experiment was called the
Controlled Impact Demonstration (CID), and
the FAA expected that it would be a relatively
tame event.

The expectations were wrong. In one of
the Center’s most dramatic moments of discov-
ery, the remotely piloted 720 settled gently onto
the desert floor . . . and exploded into a stagger-
ing fiery inferno. Needless to say, plans to
require the fuel additive were discontinued, and
from that point forth, Dryden researchers
informally referred to the CID experiment as
the “Crash In the Desert.” Nevertheless, the
experiment was a very strong illustration of
why flight research is such an important ele-
ment in technology development. The fuel
additive worked well in laboratory testing. But
in the real world environment of an airplane

crash, it was clearly a failure.22
Conclusion

Throughout its history, Dryden’s unique

resources, organizational style and single
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mission focus have enabled it to play a key role
not only in exploratory research but also in a
wide variety of other government and industry
aerospace efforts. The Center’s open sky and
lakebed landing sites provided a safe location
for projects such as testing and landing the
Space Shuttle or testing a new fuel additive in
an actual crash situation. Its unique B-52
research aircraft allowed NASA to test a new
drag chute for the Shuttle and provided a launch
vehicle for everything from scale model aircraft
and parachute systems to a low-cost method for
putting payloads into space. Its ongoing re-
search partnerships with military and industry
put the Center in a position to help aircraft
development programs when they ran into
trouble.

But the driving force behind the success
of Dryden’s many support efforts was the
attitude and experience of its staff members.
They didn’t do the wind tunnel testing or in-
depth theoretical analysis that researchers at
other centers did, but they had an unparalleled
level of experience in flight research. They
could figure out how to rig a jetliner to be flown
by remote control, or how to design a free-
flying lunar landing simulator. They could
design a flight research program to safely
investigate aircraft characteristics that had
killed other pilots. And they had the enthusiasm
and creativity to pursue these projects with
success. The employees at Dryden prided
themselves on their ability to trouble-shoot
aircraft and find quick solutions to operational
problems. So whether the problem was a dan-
gerous pilot-induced oscillation in the Space
Shuttle, a need to train astronauts to land onthe
Moon, or a flawed aircraft design that was
costing pilots’ lives, it was the kind of work at

which Dryden excelled.
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F/A-18 vertical tails.
These aircraft serve as
chase planes for
Dryden's research
airplanes

(NASA Photo

EC96 43505-9)

Chapter Six
Future Directions

S the Dryden Flight Research Center begins its second 50 years, it
faces a very different world than the one the original X-1 team knew. Advances in
technology have revolutionized Americans’ daily lives and changed our view of
what is possible in fields ranging from data processing and communication to trans-
portation, aircraft design, and space flight. We have moved from an essentially
manual, manufacturing-based society into the automated information age where
personal computers, satellite communications and the information superhighway
have become an integral part of individual, business and government transactions.
From a time when space flight was a science-fiction fantasy and the speed of sound
seemed an impenetrable barrier, we have moved into an era where the Space Shuttle
flies regularly to and from space and aircraft reach speeds of Mach 2 and beyond.
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Glossary of Acronyms

AAF
ACTIVE

ADECS
AF
AFFIC
AFTI

ALT
AOA
ARC
ARPA

ATFE
CAA
CiD
DARFPA

DAST

DEEC
DEFCS

DFBW
DFRC
EPAD
ERAST

FAA
FADEC
FBW
FCS
FOCSI
FRC
FSW
GA
GPAS
HARV

HIDEC
HiMAT

HISTEC
HSCT
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Army Air Forces

Advanced Controls Technology

for Integrated Vehicles

Adaptive Engine Control System

Air Force

Air Force Flight Test Center
Advanced Fighter Technology
Integration

Approach and Landing Test

Angle of Attack

Ames Research Center

Advanced Research Projects

Agency

Advanced Tactical Fighter

Civil Aeronautics Administration
Controlled Impact Demonstration
Defense Advanced Research Projects
Agency

Drones for Aerodynamic and Structural
Testing

Digital Electronic Engine Control
Digital Electronic Flight Control
System

Digital Fly-By-Wire

Dryden Flight Research Center
Electrically Powered Actuator Design
Environmental Research Aircraft and
Sensor Technology

Federal Aviation Administration

Full Authority Digital Engine Control
Fly-By-Wire

Flight Control System

Fiber-Optic Control System Integration
Flight Research Center

Forward Swept Wing

General Aviation

General Purpose Airborne Simulator
High Angle-of-Attack Research
Vehicle

Highly Integrated Digital Electronic
Control

Highly Maneuverable Aircraft
Technology

High Stability Engine Control

High Speed Civil Transport

HSFRS
HSFS
HSR
IBM
IPCS
ITF
ITO
JSC
KSC
LaRC
LeRC
LEX
LLRV
LLTV
LM
MAW
MSEC
NACA

NASA

NLF
OPEC

PCA
PIO
PSC
RAIF
REBUS
RLV
RPRV

RTLS
SCA
SCW
SLFC
SRA
SRFCS
SST
SSTO
STOL
TACT
VTOL
X-CRV

High Speed Flight Research Station
High Speed Flight Station

High Speed Research

International Business Machines
Integrated Propulsion Control System
Integrated Test Facility (now RAIF)
International Test Organization
Johnson Space Center

Kennedy Space Center

Langley Research Center

Lewis Research Center

Leading Edge Extension

Lunar Landing Research Vehicle
Lunar Landing Training Vehicle
Lunar Module

Mission Adaptive Wing

Marshall Space Flight Center
National Advisory Committee for
Aeronautics

National Aeronautics and Space
Administration

Natural Laminar Flow

Organization of Petroleum Exporting
Countries

Propulsion Controlled Aircraft

Pilot Induced Oscillation
Performance Seeking Control
Research Aircraft Integration Facility
Resident Back-Up Software
Reusable Launch Vehicle

Remotely Piloted Research Vehicle
Remotely Piloted Vehicle

Return to Launch Site

Shuttle Carrier Aircraft
Supercritical wing

Supersonic Laminar Flow Control
Systems Research Aircraft
Self-Repairing Flight Control System
Supersonic Transport
Single-Stage-to-Orbit

Short Take-Off and Landing
Transonic Aircraft Technology
Vertical Take-Off and Landing
Experimental Crew Return Vehicle
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Appendix

Concepts and Innovations to which the
Dryden Flight Research Center has Contributed

In the course of its fifty year history, Dryden has evaluated—in the demanding and realistic
environment of actual flight—a great many concepts and configurations developed by its own
researchers or those from other NASA centers, other agencies, or industry. Evaluating, improving
or correcting otherwise promising concepts has provided a stimulating environment for the genesis
of other new concepts and solutions. The following tabulation provides a partial list of major
contributions to aeronautics made by Dryden personnel either in conjunction with partners or on
their own initiative.

YEAR(S) CONTRIBUTIONS: SIGNIFICANCE:

1946-1958 Completed “Round One” flight investigations Performed subsonic, transonic, and supersonic
of the early X-Series and D-558 series of research to help evaluate and interpret wind tunnel
aircraft data (special emphasis on transonic nonlinear

characteristics). This research used an entire
stable of new configurations with which flight
loads, buffet, aeroelastic effects; pitch-up,
directional instability, longitudinal control, and the
effects of wing sweep were investigated. This
research contributed to design principles leading
to reliable and routine flight of production aircraft
at transonic and supersonic speeds.

1947 Provided technical guidance and data analysis This was the first time that a piloted airplane was
for the first flight through Mach 1.0 on the XS-  flown through the speed of sound. In addition to
1 (X-1 No. 1) airplane overcoming the sound barrier, this flight demon-

strated that an airplane could be controlled
through the transonic region where very non-
linear aerodynamic characteristics occu.

1947-1967 Analyzed and documented flight results Though the sonic barrier (Mach one) was by far
obtained from first-time supersonic and the most intimidating hurdle, Mach numbers of
hypersonic speeds 2.0 to 6.0 were also noteworthy because of other

challenges, such as diminished stability, aerody-
namic heating, and energy management. Flights at
Edwards achieved the following records: Mach
2.005 on 20 Nov. 1953 (D-558-2); Mach 3.2 on
27 Sept. 1956 (X-2); Mach 4.43 on 7 March 1961
(X-15); Mach 5.27 on 23 June 1961 (X-15): Mach
6.04 on 9 Nov. 1961 (X-15); and Mach 6.7 on 3
Oct. 1967 (X-15).

1947-1962 Developed generalized energy management Led to the concept of determining a poténtial
algorithms for flight planning and safe flight of  landing “footprint” for such aircraft, with varia-
low lift-to-drag ratio, unpowered aircraft tions in scale during the different stages of a

mission. Such algorithms have been applied to the
Space Shuttle. Will be used for future unpowered
space vehicles, providing multiple landing
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YEAR(S) CONTRIBUTIONS: SIGNIFICANCE:
trajectories that account for uncertainty in space-
craft characteristics and atmospheric conditions.
Allowed for unexpected or emergency conditions
and failures.

1954-1957 Identified, in flight, previously predicted inertial Provided corrective measures for inertial coupling
coupling and conducted follow-on research in the F-100 aircraft and all subsequent interceptor/

fighter aircraft.

1956-1962 Conceived and developed side-control stick Provided the technology for the first in-flight
concept and reaction control piloting techniques  demonstration of flight control using a reaction

control system on an F-104 airplane. Used a
ground-based analog computer simulation and a
reaction-controlled mechanical simulator, which
enabled movement about three axes.

1956-1957 Demonstrated the influence of the “area rule” Verified the area-rule concept and the equivalent
concept on the YF-102 and F-102A body concept in flight using two airplanes that had

the same airfoil and planform, but were designed
with and without the area-rule. Also, through this
effort established the eight-foot slotted-throat wind
tunnel (then newly modified) as a credible tran-
sonic research facility. The area-rule subsequently
became a fundamental design concept for all
supersonic cruise aircraft.

1957-1958 Conceived and flew wing-glove boundary layer ~ Pioneering demonstration showing that extensive
transition experiment on the F-104 areas of laminar flow can be obtained naturally at

supersonic speeds for practical wing surface
conditions.

1958 Conceived and developed high-speed power-off ~ Flight development of safe technique for landing
landing techniques for low lift/drag vehicles the X-15. Later applied to lifting bodies and Space

Shuttle.

1959-1968 Demonstrated blending of reaction controls with  Provided methodology and demonstration of
aerodynamic controls for reentry from high- reentry control concept that was later used for the
altitude rarified-atmospheric flight using the X-  Space Shuttle.

15 airplane

1959-1968 Demonstrated servo-actuated ball nose on the Accurate measurement of air speed and flow angle
X-15 at supersonic and hypersonic speeds.

1961-1962 Developed and evaluated piloted, unpowered Resulted in a practical application of the Rogallo
paragliders as a potential method of landing wing concept, and enabled the birth of the modern
spacecraft sport of hang gliding. Evolved to proposed

application for space station crew return vehicle.

1961-1963 Flew the first airplane to the edge of space — the The X-15 demonstrated reentry flight from up to
X-15 sixty miles, encountering phenomena that were

important in designing the Space Shuttle reentry
flight profile. The following records were
achieved by the X-15; 217,000 ft. on 11 Oct. 1961:
314,750 ft. on 17 July 1962; and 354,200 ft. on 22
Aug. 1963.

1961-1965 Provided high-quality flight data to better Discovered that hypersonically: 1) boundary layer
understand hypersonic aerodynamic and heating s turbulent, 2) boundary layer heating is lower
theory along with comparable wind tunnel than predicted, 3) skin friction is lower than
predictions on the X-15
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YEAR(S) CONTRIBUTIONS: SIGNIFICANCE:
predicted, and 4) surface irregularities causelocal
hot spots—all of which led to improved design
tools for future hypersonic vehicles, including the
Space Shuttle.

1962-1967 Conceived, developed, and flew the Lunar Provided the basis for realistic training vehicle for
Landing Research Vehicle Apollo astronauts and the controls design data

base for the lunar module.

1963 Simulated supersonic transport operations with ~ Developed FAA air traffic control procedures for
A-5A aircraft future supersonic transports.

1963-1966 Developed and evaluated the lightweight lifting ~ Demonstrated feasibility of piloted lifting body
body, the M2-F1 and the controllability and landability of the

lifting-body shape.

1963 to Developed and utilized the Flight Test Fixture Provided efficient, cost effective method to

" present Experimental Facility concept expose a wide variety of experiments to a real
flight environment.

1965-1972 Determined responses to high-altitude gust Established baseline information for large,
inputs and control usage in supersonic flight on  flexible aircraft on operational handling qualities,
the XB-70 and YF-12 pilot ratings, and gust (turbulence) variations with

altitude for future supersonic passenger aircraft.

1965-1972 Determined atmospheric features associated Provided high-altitnde clear-air-turbulence
with high cruise altitude turbulence prediction techniques for supersonic passenger

transport operation,

1966 to Pioneered developmental work in Parameter Provided powerful analytical tools for analysis of

present Identification acrodynamic characteristics of aircraft from flight

response; useful in other dynamic systems
analysis.

1966-1968 Performed an in-depth lift-drag project for Most comprehensive drag correlation ever
correlation of flight and wind tunnel data on the  achieved; revealed sources of major inaccuracies
XB-70 with wind-tunnel data at transonic speeds.

1967 First in-flight experience in severe shock Elevated the shock-interaction problem to-its
interaction aeroheating on the X-15 Inconel-X being recognized as a key temperature constraint
pylon on future hypersonic aircraft. The knowledge

gained from this was first applied to the Space
Shuttle.

1967 Developed the constant angle-of-attack test Provided an efficient approach to obtain.aerody-
technique for in-flight ground-effect measure- namics ground-effects data. Obtained evidence
ment on the XB-70 and F-104 that aerodynamic ground effect is influenced by

sink rate.

1968-1972 Identified the effect of dynamic pressure Verified that high-frequency pressure fluctuations
fluctuations on engine stall using the F-111A cause engine stalls and improved design method-

ology for F-15, F-16, and F-18 airplanes.

1970 to Developed highly flexible flight simulation This methodology was applied to flight testing of

present methodology most complex envelope-expansion efforts and

also to pilot training, mission planning, and
ultimately to aircraft system flight qualification.
Flexible, friendly user interface allows productive
operation by the individual user with little or no
support.
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YEAR(S) CONTRIBUTIONS: SIGNIFICANCE:

1971-1986 Developed Remotely Piloted Research Vehicle  Allowed the pilot to demonstrate concepts in flight
concept using ground-based FORTRAN from ground cockpit, and enabled rapid idea-to-
programmable computers to emulate crucial flight demonstration of advanced control and
flight control systems and to provide ground- display concepts without extensive validation and
based cockpit and displays verification. Unpiloted 3/8 scale F-15 was able to

quickly emulate full-scale F-15 and provide flight
data in hazardous high angle-of-attack regime
prior to exposing full-scale piloted airplane to
those conditions. Also unpiloted HIMAT took
advanced aerodynamic design concept and
structural materials to flight much earlier than
piloted aircraft could have.

1971- 1988 Evaluated the supercritical airfoil concept on F-8 Supercritical Wing (SCW) research provided
the F-8 SCW, F-111 TACT, HiMAT, AFTI/F- early and thorough demonstration and analysis of
111, and X-29 the supercritical airfoil in flight. Later applica-

tions demonstrated the affects of various plan-
forms and sweep. Supercritical airfoils are now
widely used throughout the world.

1972-1973 Conducted a pioneering thermal calibration and Demonstrated that thermal loads can be separated
separation of aero- loads for Mach 3 YF-12 from flight loads by a combination of laboratory
airplane and flight results.

1972 Flew first aircraft with full digital flight control ~ Laid the groundwork for and proved the concept
system with no mechanical backup on the F-8 of digital fly-by-wire application that later flew
DFBW (Digital-Fly-By-Wire) operationally in the Space Shuttle, F/A-18, B-2,

and the current generation of commercial trans-
ports.

1973-1978 Developed sensor system for precise measure- Provided highly improved reference measurement
ment of true gust velocity and demonstrated it methods for load alleviation and propulsion
at high supersonic cruise altitudes on the YF-12  system evaluations in high-altitude turbulence.

YF-12: Demonstrated light-bar artificial horizon Concept incorporated in operational SR-71 fleet as

1973-1974 (peripheral vision display), tested on the YF-12  improved indicator of horizon through laser

T-37: 1981 and T-37 projection.

1974-1981 Applied aerodynamic lessons learned in flight Verified effectiveness of air deflectors and defined
to ground vehicle (truck or motor home) drag the benefits of full streamlining. Results contrib-
reduction uted to fuel savings estimated at 15 million barrels

per year.

1974-1976 Flight tested an integrated digital propulsion Demonstrated performance and stability improve-
control system on the F-111 ments with digital inlet/engine control systems,

technology applicable to the F-22 and High Speed
Civil Transport.

1974-1978 Performed in-depth mixed compression inlet Interpreted and documented pressure recovery,

research on the YF-12 distortion, unstart and stall dynamics, and control
for engine inlets; compared results to full scale
and subscale wind tunnel test results. This
technology was intended for the supersonic
transport concept.

1975-1977 Conducted power-off landings to measure Basic airframe noise “floor” documented for
airframe noise on the Jetstar and establishing engine noise reduction goals.
AeroCommander airplanes.
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YEAR(S)

CONTRIBUTIONS:

SIGNIFICANCE:

1975-1977 Conceived and flew the YF-12 hollow-cylinder =~ Benchmark, laboratory-quality fluid-mechanics
“Cold Wall” experiment experiment. A major contribution topredicting

aerodynamic heating.

1975-1977 Flew the redundant computer systems with the Tests provided confidence for flight-worthiness in
associated algorithms in the F-8 DFBW the digital control concepts. They revealed many

modifications that had to be made before being
flown in the Space Shuttle.

1975-1978 Developed and demonstrated a Mach 3 cruise Accuracy of altitude control and ride quality 'was
autopilot on the YF-12 greatly improved.

1975-1981 Investigated wing tip vortices behind bombers Assessed vortex strength on trailing aircraft to
and transports with probe airplanes evaluate separation distance and evaluated flap

configurations for hazard attenuation.

1976 Demonstrated agility and turn capability at Extended the agility and performance standards
elevated load factors as well as overall flying for the next generation of fighter aircraft:
qualities of the YF-17 Aircraft

1976 to Pioneered research efforts in unpiloted, non- This technology provided a capability for high

present airbreathing, high-altitude loiter aircraft altitude atmospheric study of the ozone layer and
technology greenhouse effects. Also has the potential for use

in studying and surveying within the atmosphere
of Mars.

1977-1980 Studied the effects of time delay for digital This flight research quantified the effect of pure
flight control systems on the F-8 DFBW time delayed response occurringin digital

systems. These delays can cause serious safety
problems for aircraft and spacecraft.

1977-1981 Conceived, developed and tested a pilot- Developed flight control system modifications to
induced-oscillation suppression system for the reduce pilot induced oscillations during landing ‘of
Space Shuttle the Space Shuttle.

1977-1986 Performed theoretical and experimental buck- Enabled determination of design guidelines and
ling research buckling characteristics for hypersonic wing panel

without destroying the test part.

1978 Performed benchmark flight research using the ~ Provided benchmark reference of flow quality for
10-Degree-Cone boundary-layer transition transonic and supersonic wind tunnels, and a
experiment on the F-15 rational means for rating the various tunnels for

flow quality.

1978 Developed and flew a cooperative integrated Improved flight control precision-and reduced the
propulsion/flight control system on the YF-12 occurrence of inlet unstarts. Incorporated in the

operational SR-71 fleet.

1978-1980 Conducted comprehensive study of variable- External compression inlet pressure recovery,
geometry external compression inlet on the F-15 - steady state and dynamic distortion, drag, and Tift

were measured in flight and compared to wind-
tunnel and analytical methods; also ‘documented
effects of scale and Reynold’s number.

1978-1985 Demonstrated in flight and improved a NASA Improved departure spin resistance for the F-14

aileron/rudder interconnect concept on the F-14

aircraft. Final product to be incorporated into
fleet for F-14 models A, B and D.

Page 185




YEAR(S) CONTRIBUTIONS: SIGNIFICANCE:

1978-1992 Evaluated and improved an in-flight wing Applied an electrical-optical system that provides
deflection measurement system used on F-111/ digital data more precisely and with greater ease
TACT, HiMAT, X-29 airplanes than photographic methods.

1979-1981 Evaluated the winglet concept on the KC-135 Defined the potential for drag reduction and
airplane increase in range for large transport-type aircraft

for various aero load conditions. Concept now
applied to many transport and business aircraft.

1979-1981 Evaluated oblique wing concept using the AD-1 ~ Evaluated low-speed oblique-wing flying quali-
airplane ties, stability, and control at asymmetric sweep

angles up to 60 degrees. The concept was
proposed for supersonic transport and military
applications.

1979-1995 Evaluated non-intrusive air data pressure source  Related applications followed on atmospheric
arrays on the KC-135, F-14, and F-18 research aircraft, military derivative systems, high

angle-of-attack (AoA) research aircraft, and
potentially for reentry vehicles. Concepts were
extended through the transonic region and to
extremely high AoA.

1980 Pioneered the development of fiberglass wing Provided a low cost method to evaluate innova-
glove technique for high performance airfoil tive high-speed airfoil concepts at full-scale flight
flight research conditions.

1980-1983 Conceived and tested flight test trajectory Integration of flight-test parameters into single
guidance algorithms display allowed pilots to fly different flight-test

maneuvers more accurately and get higher quality
data.

1981 Conceived and tested the flight test maneuver Automated the flight test trajectory guidance
autopilot system to fly flight research maneuvers to

produce more repeatable and more accurate data.

1981-1987 Performed in-flight testing of Shuttle tiles for Established criteria for orbiter tile erosion in
air-load endurance and rain damage moisture. Altered launch criteria in rain, and

restricted ferrying the Shuttle cross country in bad
weather.

1981-1984 Evaluated Digital Electronic Engine Control on  Flew contractor Digital Electronic Engine Control
the F-15 in flight and suggested and tested improvements.

1981 & 1987 Pioneered in-flight boundary layer transition Provided empirical understanding of the effects of
experiments for effects of wing sweep on the F-  sweep on boundary layer transition. Established
111 and F-14 that extensive lengths of natural laminar flow can

occur on a lifting surface (wing).

Hidden Line: - - Developed generalized and practical solution to A powerful addition to computer graphics which

1982 the hidden-line problem and the silhouette resolved the problem of perspective and silhou-

Silhouette: problem ettes in computerized designs, now commonly

1986 used in all types of applications and disciplines.

1985-1990 Conceived and developed the half-cycle theory Provided very practical fatigue theory for life-

cycle prediction of aesrospace structures.

1986-1987 Conceived and tested active engine stall margin ~ Provided engine and airplane performance
control on the F-15 Highly Integrated Digital improvements without adding weight, used on F-
Electronic Control flight test 15E and F-22 airplanes.
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YEAR(S)

CONTRIBUTIONS:

SIGNIFICANCE:

1987-1988 Quantified the effects of engine control system  Provided criteria for digital engine control design
delays on flying qualities on the F-104 for use in precise formation flying.
1991-1996 Evaluated propulsive control (thrust vectoring)  Significant enhancement of high angle-of-attack
on HARYV and X-31 agility and maneuverability. Made significant
contribution to applicability of computational fluid
dynamics (CFD) to high angle-of-attack flows by
providing comparison of CFD, wind-tuniiel and
flight data at the same scale.
1992 Invented the Anderson Current Loop for Potential major improvement over the classical
evaluating signals from sensors Wheatstone Bridge circuit used in applications
such as stress measurement.
1993 Demonstrated the Smart Actuator controlled Electronics that close the flight control loop are
with an optical data link on the F-18 Systems built into the control surface actuator rather than in
Research Aircraft the flight control computer. Reduced the many
wires that normally connect an actuator with the
primary flight control computer to four fiber optic
cables. Reduced aircraft weight and vulnerability
to electro-magnetic interference.
1993-1994 Conducted inlet research at extremely high Inlet high frequency pressure recovery and
angle of attack on F-18 HARV distortion measured at angles of attack upto 100
degrees and in spins, providing data for vertical
short take-off and landing (VSTOL) and agile
fighter airplanes.
1993-1995 Conceived and tested emergency flight control ~ Provided safe landing for an airplane with failed
using computer-controlled engine thrust in the flight controls—may be implemernted with only
F-15 & MD-11 software changes.
1993-1995 Conceived, and developed the Landing Systems  Provided unigue capability to test Space Shuttle
Research Aircraft on the CV-990 tires, wheels, brakes, blow-outs, and subsystems
under severe loading and landing conditions.
Allowed Shuttle cross-wind landing limits to be
raised by 33 percent.
1993-1995 Completely characterized the sonic boom Multi-altitude measurements by probe aircraft
propagation from airplane to ground permitted assessment of prediction techniques-of
sonic boom propagation characteristics in the real
atmosphere.
1994 Demonstrated flow visualization in-flight of Collected previously unavailable data for sonic
planar laser-induced fluorescence for high transverse gas injection into crossflows from Mach
Reynolds number at subsonic through super- numbers 0.8 to 2.0, including at Mach 1.0, that
sonic speeds on the F-104 Flight Test Fixture provided validation of analytical models of the
same flow conditions.
1994 Demonstrated in-flight indirect optical Validated indirect optics (non-TV) as-a viable

technique for high glide-slope approaches with
no direct view of the airfield on the two-seat F-
104

concept for piloted landings without direct view of
the ground. Important for hypersonic vehicles and
possibly for the High Speed Civil Transport.
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